Track 3
Prof. Zhongliang Zhao
Beihang University, China
Biography: Zhongliang Zhao is a Professor at Beihang University (BUAA), China. He got his Ph.D. degree in Computer Science from the University of Bern, Switzerland in 2014. His current research interests include machine learning, ad-hoc networks, intelligent unmanned system, and space-terrestrial integrated networks.
Assoc. Prof. Yongcai Wang
Renmin University of China, China
Biography: Yongcai
Wang received his BS and PhD degrees from department of automation sciences
and engineering, Tsinghua University in 2001 and 2006 respectively. He
worked as associated researcher at NEC Labs. China from 2007-2009. He was a
research scientist in Institute for Interdisciplinary Information Sciences
(IIIS), Tsinghua University from 2009-2015. He was a visiting scholar at
Cornell University in 2015. He is currently an associate professor at
Department of Computer Sciences, Renmin University of China. He has
published more than 80 papers on famous international conferences and
journals, including TMC, TON, JSAC, Infocom, TCS etc. He won the First Prize
of Technical Invention of China Navigation Society in 2021. His research
interests include network localization, network algorithms, cooperative
localization and mapping algorithms.
Speech Title: Theory and Algorithms for Relative Location Estimation in UAV Networks
Abstract: Relative localization plays a critical role in UAV network formation control and other applications.
Regarding the different types of sensors equipped on the UAVs, UAV relative localization can be carried out by UWB-based, Range-Only Relative Localization (RORL) or by Vision-UWB cooperated, 6-DOF Relative State Estimation (VRSE).
Because the UAV network is generally sparse, localizability problem and accurate localization algorithms are both important.
In this talk, I will introduce our recent research progress on the localizability theories and relative localization algorithms for both RORL and VRSE problems.
In RORL problem, we present efficient algorithm to detect the localizable components in sparse UAV networks and efficient component-stitching based algorithm for RORL.
In VRSE, we present the relative state estimation model and efficient localization algorithm.
Prof. Zheng
Dong
Shandong University, China
Biography: Zheng
Dong (M’ 18) received the B.Sc. and M.Eng. degrees from the School of
Information Science and Engineering, Shandong University, Jinan, China, in
2009 and 2012, respectively, and the Ph.D. degree from the Department of
Electrical and Computer Engineering, McMaster University, Canada, in 2016.
He was a Postdoc Research Fellow in the School of Electrical and Information
Engineering, The University of Sydney, Australia. He is currently a Research
Professor in the School of Information Science and Engineering, Shandong
University, China. His research interests include the Industrial Internet of
Things and ultra-reliable low-latency communications.
Assoc. Prof. Baoding Zhou
Shenzhen University, China
Biography: Baoding
Zhou is an Associate Professor in in College of Civil and Transportation
Engineering of Shenzhen University, China. He received his Ph.D degree in
Photogrammetry and Remote Sensing from Wuhan University. His research
interests include indoor localization, indoor mapping, crowdsensing, and
robot navigation. He has published more than 60 academic papers and
authorized more than 20 patents. He serves as an Associate Editor for the
IEEE Sensors Journal and co-chairs of multiple international conferences. He
has won the first prize of Science and Technology Progress Award in
Surveying and Mapping of China and first prize of Guangdong Provincial
Technology Invention Award.
Speech Title: Indoor localization based on Wi-Fi RTT and MEMS-IMU